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Gambles are random variables that model possible changes in wealth. Classic decision theory

transforms money into utility through a utility function and defines the value of a gamble as the

expectation value of utility changes. Utility functions aim to capture individual psychological

characteristics, but their generality limits predictive power. Expectation value maximizers are

defined as rational in economics, but expectation values are only meaningful in the presence of

ensembles or in systems with ergodic properties, whereas decision-makers have no access to

ensembles, and the variables representing wealth in the usual growth models do not have the rele-

vant ergodic properties. Simultaneously addressing the shortcomings of utility and those of expect-

ations, we propose to evaluate gambles by averaging wealth growth over time. No utility function

is needed, but a dynamic must be specified to compute time averages. Linear and logarithmic

“utility functions” appear as transformations that generate ergodic observables for purely additive

and purely multiplicative dynamics, respectively. We highlight inconsistencies throughout the de-

velopment of decision theory, whose correction clarifies that our perspective is legitimate. These

invalidate a commonly cited argument for bounded utility functions. VC 2016 Author(s). All article
content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0
Unported License. [http://dx.doi.org/10.1063/1.4940236]

Over the past few years, we have explored a conceptually

deep, simple, change of perspective that leads to a novel

approach to economics. Much of current economic theory

is based on early work in probability theory, performed

specifically between the 1650s and the 1730s. This foun-

dational work predates the development of the notion of

ergodicity, and it assumes that expectation values reflect

what happens over time. This is not the case for stochas-

tic growth processes, but such processes constitute the

essential models of economics. As a consequence, nowa-

days expectation values are often used to evaluate situa-

tions where time averages would be appropriate instead,

and the result is a “paradox,” “puzzle,” or “anomaly.”

This class of problems, including the St. Petersburg para-

dox and the equity-premium puzzle, can be resolved by

ensuring the following: the stochastic growth process

involved in the problem needs to be made explicit; the

process needs to be transformed to find an appropriate

ergodic observable. The expectation value of the new

observable will then indeed reflect long-time behavior,

and the puzzling essence of the problem will go away.

Here we spell out the general recipe, which we phrase as

the solution to the general gamble problem that stood at

the beginning of the debate in the 17th century. We hope

that this recipe will resolve puzzles in many different

areas.

I. PRELIMINARIES

For clarity of exposition, we limit ourselves to the context

of an individual evaluating gambles in situations where any

attendant circumstances other than wealth, x, expressed in

money can be disregarded. Currently, the dominant formalism

for treating this problem is utility theory. Utility theory was

born out of the failure of the following behavioral null model:

individuals were assumed to optimize changes in the expecta-

tion values of their wealths. We argue that this null model is a
priori a bad starting point because the expectation value of

wealth does not generally reflect what happens over time. We

propose a different null model of human behavior that elimi-

nates, in many cases, the need for utility theory: an individual

optimizes what happens to his wealth as time passes.

The question whether the time average of an observable

is well represented by an appropriate expectation value dates

back to the 19th-century development of statistical mechan-

ics1 and is the origin of the field called “ergodic theory.” In

the following, we will identify, for different stochastic proc-

esses, stationary independent increments. Being stationary and

independent, these observables have many ergodic properties,

of which the following specific property is relevant here.

Ergodic property (equality of averages)

The expectation value of the observable is a constant
(independent of time), and the finite-time average of the
observable converges to this constant with probability one
as the averaging time tends to infinity.

Whether an observable possesses this property is crucial

when assessing the significance of its expectation value. We

a)Electronic mail: o.peters@lml.org.uk. Also at Santa Fe Institute.
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will refer to observables with this property as “ergodic

observables.”

Gambles are the formal basis of decision theory.

Decision theory studies mathematical models of situations

that create an internal conflict and necessitate a decision. For

instance, we may wish to model the situation of being

offered a lottery ticket. The conflict is between the unpleas-

ant certainty that we have to pay for the ticket, and the pleas-

ant possibility that we may win the jackpot. It necessitates

the decision whether to buy a ticket or not. Although eco-

nomics deals with many types of decisions, not all of which

are monetary, the quantitative treatment of the gamble prob-

lem is central to many branches of economics including util-

ity theory, decision theory, game theory, and asset pricing

theory which in turn informs macroeconomics, as has been

argued convincingly.2

We will be dealing with mathematical models but use a

common suggestive nomenclature. In this section, we write in

SMALL CAPITALS those terms of everyday language that in the

following will refer to mathematical objects and operations.

A GAMBLE is a set of POSSIBLE NET PAYOUTS DðnÞ with

associated PROBABILITIES pðnÞ, where n is an integer designat-

ing an OUTCOME. For convenience, we order OUTCOMES such

that Dðnþ 1Þ > DðnÞ. Different GAMBLES are compared, the

decision being which to subject one’s WEALTH to, and more

generally to what extent.

GAMBLES are versatile models, useful to describe a num-

ber of real-world prospects. An insurance contract may be

modeled as a GAMBLE, as may an investment. LOTTERIES are

important in the historical development of decision theory.

Here, POSSIBLE PRIZES GðnÞ are purchased for a TICKET FEE, F,

leading to POSSIBLE NET PAYOUTS, DðnÞ ¼ GðnÞ � F, which

are negative up to some value of n and then positive. This

creates a decision problem when comparing to the option of

DOING NOTHING: the certain unpleasant prospect of LOSING the

TICKET FEE has to be weighed against the uncertain prospect

of WINNING one of the nmax POSSIBLE PRIZES.

II. OUTLINE

Section III is a modern treatment of the problem, using

dynamics, that is, we use information about temporal behav-

ior, not exclusively measure-theoretic probabilistic informa-

tion. Expectation values play a central role in economics,

essentially for two reasons. First, the expectation value of

any observable is, by definition, the average over N instances

of the observable, in the limit N !1. It can therefore be

relevant for a member of a large resource-sharing group.

Decision theory, however, is concerned with individuals, not

with groups, wherefore we disregard this first possible reason

for using expectation values. Second, an observable may

have the ergodic property mentioned in Section I, in which

case it is informative of what happens to an individual over

time. We are concerned with the conditions under which this

second reason for using expectation values is relevant.

The two key quantities in our treatment are the expected

rate of change in wealth, 1
dt hdxi, for additive dynamics, and

the expected exponential growth rate of wealth, 1
dt hdlnxi, for

multiplicative dynamics. Both quantities were suggested as

criteria to evaluate a gamble, 1
dt hdxi by Huygens3 and

1
dt hdlnxi by Laplace,4 although their dynamic significance

was overlooked, and time scales dt were usually omitted and

implicitly set to 1.

Section IV discusses the complicated historical develop-

ment of these two criteria, which we now briefly summarize.

It is a partial explanation of the fact that this perspective has

lain hidden from view, despite its otherwise implausible

problem-solving power, and the availability of its conceptual

building blocks for more than 100 years now. It is necessary

to re-tell the history of the problem because of an important

misconception that forbids the modern perspective.

Bernoulli5 suggested a quantity similar to the exponen-

tial growth rate and called it a “moral expectation,” interpret-

ing the logarithm in the exponential growth rate as a

psychological re-weighting that humans apply to monetary

amounts. This presented a very simple criterion—maximiz-

ing the expected exponential growth rate—in a very compli-

cated way. Laplace4 corrected Bernoulli formally, though

not conceptually, writing down exactly the expected expo-

nential growth rate, though not pointing out its dynamical

significance. Menger6 did decision theory a crucial disserv-

ice by undoing Laplace’s correction, adding further errors,

and writing a persuasive but invalid paper on the subject that

concluded incorrectly—in the language of utility theory—

that only bounded utility functions are permissible. This for-

bade the use of either of the dynamically sensible quantities

because—forced into the framework of utility theory—the

expected rate of change in wealth corresponds to a linear

(unbounded) utility function, and the expected exponential

growth rate corresponds to a logarithmic (unbounded) utility

function.

That unbounded utility functions are not allowed

became an established result. We ask here why we cannot

use unbounded utility functions, and find no good reason.

The arguments for the boundedness of utility functions that

we found are not scientifically compelling. A visual repre-

sentation of the convoluted history of the problem is shown

in Fig. 1.

We conclude in Section V that the modern dynamic per-

spective is legitimate and powerful. Conceptually, its power

derives from a new notion of rationality. Many reasonable

models of wealth are non-stationary processes. Observables

representing wealth then do not have the ergodic property of

Section I, and therefore rationality must not be defined as

maximizing expectation values of wealth. Rather, we pro-

pose as a null model to define rationality as maximizing the

time-average growth of wealth. This can be done by first

converting the non-ergodic processes into stationary inde-

pendent increments per time unit and then maximizing ex-

pectation values of these (identical to their time averages

because these observables do have the ergodic property of

Section I). These observables are growth rates, and their defi-

nition is dictated by the dynamics of the wealth model.

Because the gamble problem is phrased without reference to

possible causes of the changes in wealth it is entirely general,

wherefore our work resolves a host of more specific prob-

lems in economics, such as the leverage problem,7 the 300-

year-old St Petersburg paradox,8 and the equity-premium
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puzzle.9 The requirement of boundedness for utility func-

tions is both unnecessary and detrimental to the formalism of

decision theory. Our analysis of the history of the problem

removes this unnecessary obstacle in the way of using physi-

cally sensible criteria in decision theory.

III. THE DYNAMIC PERSPECTIVE

In order to evaluate a gamble, we ask: How are the dy-

namics that the gamble is part of to be modeled? In the

examples below, an answer to this question allows us to

identify stationary independent increments, i.e., to construct

an ergodic observable, whose expectation value reflects the

behavior over time. Without an answer, the problem is

underspecified and cannot be resolved without further

assumptions, for instance about human psychology.

Requesting the specification of a dynamic exposes as

underspecified the original set-up of many problems in

economics. Economics treats randomness in a purely

measure-theoretic way: possible outcomes are given weights

(measures or probabilities), and the overall quality of a gam-

ble is a weighted average over outcomes, as if all possibilities

were materializing simultaneously with different degrees of

reality. Modern perspectives on randomness actively down-

play the importance of the specific model of measure theory,

and emphasize the need to place the aim of the theory above

the conditions imposed by a specific axiomatization. Thus,

Gell-Mann and Hartle10 demonstrated that probabilities

beyond the interval [0,1] are useful in quantum mechanics,

and Tao11 pointed out the importance of invariance under

extension of the sample space. In our case, we argue that a

dynamic is needed in addition to the random variable, turning

the gamble into a stochastic process. Dynamics means repeti-

tion, and requiring the specification of a dynamic is requiring

the admission that we live through time, not in a superverse of

parallel worlds with which we can share resources.

Gambles are often treated in economics as so-called one-

shot games, meaning that they are not part of any dynamic

and are assumed to reside outside of time, an assumption that

is difficult to describe: “it’s more or less impossible to con-

sider any gamble as happening outside of time” [Ref. 12,

p. 3]. The one-shot setup seems ill-conceived to us, and the

methods we propose produce little insight into the situations it

may represent. It is ill-conceived because any gamble affects

what we may be able to do after the gamble. If we lose our

house, we cannot bet the house again. The typical decision

FIG. 1. History of the classic decision theory problem of evaluating a gamble. The two physically meaningful solutions are on the left and right of the figure.

Multiplicative wealth models predict qualitative behavioral patterns—such as risk aversion—that additive wealth models do not predict. In this sense, Laplace’s
Criterion is often more relevant, especially when changes in wealth dx are of similar scale as wealth x itself. Problematic aspects are color-coded in red.
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problem only makes sense in the context of a notion of irre-

versible time and dynamics—we cannot go back in time after

the gamble, and our future will be affected by the decisions

we make today. One situation that may be represented by a

one-shot game is a bet on a coin toss after which the player

(who does not believe in an afterlife) will drop dead. Our

methods are not developed for such a-typical cases.

A. Additive repetition

Treating DðnÞ as a (stationary) random variable, repeti-

tion of a gamble may mean different things. First, a gamble

may be repeated additively, so that the wealth after T rounds

of the gamble is

xðtþ TdtÞ ¼ xðtÞ þ
XT

s¼1

DðnsÞ; (1)

where ns labels the outcome observed in the sth round of the

gamble.

x does not have the ergodic property of Section I: the ex-

pectation value is not constant in time, hxðtþ TdtÞi
¼ xðtÞ þ ThDi; the finite-time average, �xT ¼ 1

T

PT
s¼1

xðtþ sdtÞ, does not converge to the expectation value but

rather is a random variable whose distribution broadens indef-

initely as T !1. Averaging N realizations of xðtÞ over a

large ensemble (N !1) is not equivalent to averaging xðtÞ
over a long time interval Tdt (where T !1).

An ergodic observable for Eq. (1) exists in the additive

changes in wealth, xðtþ TdtÞ � xðtÞ, whose distribution does

not depend on t. They are stationary independent increments

for this dynamic. The finite-time average of the rate of

change in wealth converges to the expectation value of the

rate of change with probability one,

lim
T!1

1

Tdt
x tþ Tdtð Þ � x tð Þ
� �

¼ 1

dt
hdxi: (2)

The expectation value, by definition, is identical to the ensem-

ble average, hdxi¼ limN!1
1
N

PN
�¼1 x�ðtþdtÞ�xðtÞ½ �¼hDi,

where x�ðtþdtÞ are different parallel realizations of wealth af-

ter one round of the gamble.

This explains Huygens’ Criterion: under additive dy-

namics as in Eq. (1), the rate of change in wealth is an er-

godic observable, and he who chooses wisely with respect to

its expectation value also chooses wisely with respect to the

time average.

For the specific dynamics of Eq. (1), an analysis of this

particular observable using our perspective will agree with

an analysis using the economics concept of rationality. This

is not the case for other observables—Huygens’ Criterion
defines something very special: an ergodic observable on a

non-ergodic wealth process.

The simplicity of additive dynamics comes at a cost of

realism. For instance, it implies that possible changes in

wealth are not affected by the current level of wealth. The

millionaire and the penniless are modeled as having equal

chances of increasing their respective wealths by $10,000.

For small gambles (D� x), this linear approximation can be

valid (the chances of gaining at least $0.01 may really be

similar), and indeed the use of Huygens’ Criterion emerged

from considerations of recreational gambling where an insig-

nificant amount is bet on a game of dice.

B. Multiplicative repetition

A gamble may also be repeated multiplicatively. To

simplify notation, we define per-round growth factors

rðnÞ ¼ xðt0ÞþDðnÞ
xðt0Þ , where t0 is the time just before the first

round of the gamble. These inherit their stationarity and in-

dependence from D. In this case,

xðtþ TdtÞ ¼ xðtÞ
YT

s¼1

rðnsÞ; (3)

which may be re-written as

xðtþ TdtÞ ¼ xðtÞ exp
XT

s¼1

ln rðnsÞ
" #

: (4)

x again lacks the ergodic property of Section I: the ex-

pectation value is not constant in time, hxðtþ TdtÞi ¼ xðtÞ
expðT lnhriÞ; the finite-time average �xT ¼ 1

T

PT
s¼1 xðtþ sdtÞ

does not converge to the expectation value but rather is a

random variable whose distribution is not stationary. Again,

averaging many realizations of xðtÞ over a large ensemble

(N !1) is not equivalent to averaging xðtÞ over a long

time interval (T !1). Crucially, and in contrast to the addi-

tive dynamic (Eq. (1)), additive changes in wealth are not er-

godic either. The construction of an ergodic observable now

requires a non-linear transformation.

An ergodic observable for Eq. (3) exists in the relative
changes in wealth,

xðtþTdtÞ
xðtÞ , whose distribution does not

depend on t. Increments in the logarithm of x are now sta-

tionary and independent. The finite-time average of the rate

of change in the logarithm of wealth, i.e., the exponential

growth rate, converges to the expectation value of the rate of

change in the logarithm with probability one,

lim
T!1

1

Tdt
ln

x tþ Tdtð Þ
x tð Þ

 !
¼ 1

dt
hdlnxi: (5)

The expectation value, by definition, is identical to the en-

semble average hdlnxi ¼ limN!1
1
N

PN
�¼1 ln

x�ðtþdtÞ
xðtÞ

� �
.

This explains Laplace’s Criterion: under multiplicative

dynamics, the rate of change in the logarithm of wealth is an

ergodic observable, and he who chooses wisely with respect

to its expectation value also chooses wisely with respect to

the time average. Multiplicative repetition is exemplified by

geometric Brownian motion, the most influential model in

mathematical finance.

Multiplicative repetition represents important qualitative

aspects of real wealth processes in a different way than addi-

tive repetition. For instance, under multiplicative repetition

the likelihood of a $10,000 increase in wealth is no longer in-

dependent of initial wealth. Instead of modeling the million-

aire and the penniless as having equal chances of gaining

$10,000, multiplicative repetition models them as having

equal chances of increasing their respective wealths by 1%.

Multiplicative repetition treats zero wealth as a special state,
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resembling a no-borrowing constraint: betting more than we

have can have qualitatively different consequences from bet-

ting less than we have. Another important, subtle, and more

realistic property of multiplicative repetition is this: time-

average growth is impaired by fluctuations. Unlike under

additive repetition, the introduction of fluctuations that do not

affect the expectation value does reduce the growth rate that

is observed with probability one over a long time. In the sense

that some dynamical models are more realistic than others,

reality imposes a dynamic and corresponding ergodic growth

rates on the decision-maker. We may choose which gamble to

play but we do not get to choose the mode of repetition.

Yakovenko and Rosser13 discussed in detail the regimes

of applying additive and multiplicative models of monetary

wealth. The gamble problem deals with monetary wealth,

but it is useful to look beyond this domain. “Living systems

[…] give rise to organisms like themselves” [Ref. 14, p. 5].

Life self-reproduces, is multiplicative. Hence, multiplicative

models capture emergent properties of living entities that

additive models fail to capture. An example is cooperation

and the formation of social structure.15

Equipped with modern tools, we have no need for the

concept of utility. The general gamble problem can be

resolved without it, as can—of course—special cases, such

as the 300-year-old St Petersburg paradox.7

Common error

Prominent texts in decision theory make incorrect
statements about the equality of expectation values and
time averages, as for instance in the following passage:
“If a game is “favorable” from the point of view of the ex-
pectation value and you have the choice of repeating it
many times, then it is wise to do so. For eventually, your
amount of money and, consequently, your utility are
bound to increase (assuming that utility increases if
money increases),” [Ref. 16, p. 98].

This statement by Chernoff and Moses is not true if

“favorability” is judged by an observable that does not have

the ergodic property of Section I. The general falsity of their

statement is evident in panel (b) of Fig. 2, an example of the

multiplicative binomial process, studied in detail by

Redner.17 Here, x is not ergodic, and the game is “favorable

from the point of view of the expectation value” of x, but it

is certainly not wise to repeat it many times. We will use ita-

licized text in boxes to highlight errors and weaknesses in

arguments that are commonly believed to be valid.

IV. HISTORICAL DEVELOPMENT OF DECISION
THEORY

In this section, we relate the modern treatment of the

gamble problem to classic treatments and highlight common

misconceptions as well as inconsistencies within the classic

view. Aspects of this history, which are included here for

completeness, have been discussed previously.8 Menger’s

ill-conceived rejection of unbounded utility functions was

discussed by Peters.18 Its treatment here is briefer and more

accessible to those unfamiliar with Menger’s original text.

A. Pre-1713 decision theory: Expected wealth

Following the first formal treatment by Fermat and

Pascal19 of random events, it was widely believed that gam-

bles are to be evaluated according to the expected rate of

change in wealth. To give it a label, this criterion may be

attributed to Huygens,3 who wrote “if anyone should put 3

shillings in one hand without telling me which, and 7 in the

other, and give me choice of either of them; I say, it is the

same thing as if he should give me 5 shillings.”

Huygens’ Criterion

Maximize the rate of change in the expectation value of
wealth

1

dt
hdxi: (6)

In modern terms, Huygens suggested to maximize the er-

godic growth rate assuming additive dynamics.

Nicolas Bernoulli, in a letter to Montmort,20 challenged

this notion by introducing a lottery whose expected prize,

hGðnÞi, diverges positively with the number of possible out-

comes, nmax. Since the expected rate of change in wealth
1
dt hdxi ¼ 1

dt hGðnÞi � Fð Þ is linear in hGðnÞi, it too diverges for

any finite ticket fee F. According to Huygens’ Criterion, any

finite ticket fee should be paid for the lottery. However,

Bernoulli chose the lottery such that large prizes only occur

with small probability, and found that typical individuals when

(hypothetically) offered this lottery were not willing to pay

much. This seeming incongruence became known as the St

Petersburg paradox. From the modern perspective, the paradox

challenges the notion of rationality defined as expectation-

optimization, or the assumption of unrealistic additive dynam-

ics. It exposes the following:

Huygens’ weakness

Expectation values are averages over ensembles of random
realizations. The conceptual weakness of Huygens’s crite-
rion is its limited relevance to an individual making a deci-
sion. The expectation value would be relevant over T
rounds if the individual were part of a large resource-
sharing group mimicking a statistical ensemble, where the
group size N / expðTÞ.17,21 It would also be relevant if
the wealth process xðtÞ were additive—the rate of change
would then be ergodic and the expectation value would
reflect how the individual fares over time. Wealth is often
better modeled with multiplicative dynamics.

Specifically, Bernoulli proposed the following lottery: a

fair coin is tossed until heads appears for the first time. The

number of coin tosses, n 2 f1; 2:::g, is modeled as a random

variable with geometric distribution, pðnÞ ¼ 2�n. The prize

as a function of n is GðnÞ ¼ $2n�1. It follows that GðnÞ is

power-law distributed with diverging first moment. The time

dt to generate an instance of the random variable, i.e., to play

the lottery, is considered independent of n in this study. The

lottery is usually presented without restriction on n. For a

more careful treatment of the problem, one must initially

require n � nmax. For more than nmax coin tosses, the lottery

is declared invalid and no change in wealth occurs. The
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behavior of the original unrestricted case is investigated as

the limit nmax !1.

B. 1738–1814 decision theory: Utility

By 1738, N. Bernoulli’s cousin Daniel Bernoulli and

Cramer [Ref. 5, p. 33] had conceptualized the problem as

follows. They argued that people attach a value to money

that is non-linear in the dollar amount. Cramer had written to

Bernoulli in 1728: “in their theory [i.e., Huygens’ Criterion]

mathematicians evaluate money in proportion to its quantity

while, in practice, people with common sense evaluate

money in proportion to the utility they can obtain from it.”

Bernoulli suggested a logarithm to map a dollar amount into

utility, uBðxÞ ¼ lnðxÞ. We know today that this conceptuali-

zation is problematic. For instance, we must require that

there be no distinguished currency (nothing physical depends

on whether we quote wealth in dollars or cents). It follows

that the numerical magnitude of a physically meaningful

quantity can only change by some power of the exchange

rate when we switch currencies. Since the logarithm is not a

power law, this fundamental requirement from dimensional

analysis is violated [Ref. 22, p. 17 ff].

The quantity, Bernoulli suggested, that people consider

when deciding whether to take part in the lottery is a combi-

nation of the expected gain in their utility if no ticket fee

were paid, and the loss in utility they suffer when they pay

the ticket fee. This leads to the following criterion:

Bernoulli’s criterion

A lottery ticket is worth buying if the following quantity
is positive [Ref. 5, pp. 26–27]:

hduB
þi � hduB

�i ¼
Xnmax

n

p nð Þln
xþ G nð Þ

x

� �" #

� ln
x

x� F

� �
: (7)

The first terms on either side of the equation represent the

expected gain in logarithmic utility, resulting from the prizes of

the lottery. This would represent the net change in utility if tickets

were given away for free, F ¼ 0. The second terms represent the

loss in logarithmic utility suffered at the time of purchase, i.e., af-

ter the ticket is bought but before any prize is received. This is

inconsistent with expected-utility theory.8 The conceptual incon-

sistency may be phrased as follows: Bernoulli thought of utility

as a new currency, but currency conversion is always linear—at

odds with the non-linear logarithm favored by Bernoulli.

Bernoulli’s inconsistency

Bernoulli’s Criterion is mathematically inconsistent with
later work in expected-utility theory because Bernoulli did
not calculate the expected net change in logarithmic utility.
He did not only replace money with utility of money but
also computed an observable other than the expected
change in this new object.

FIG. 2. Assume initial wealth xðt0Þ ¼ $1 and toss a fair coin. If tails show (n ¼ 1), x decreases to xðt0 þ dtÞ ¼ $0:60. If heads show (n¼ 2), x increases to

xðt0 þ dtÞ ¼ $1:50. The gamble is repeated (a) additively, linear plot, and (b) multiplicatively, log-linear plot (zoom-ins below the main panels). For clarity,

the same sequence of heads and tails is used in both plots, and the color-codings are identical. A typical trajectory is shown (magenta lines). Under (a), the ex-

pectation value of x (dashed line) grows in time with the expected rate of change (ergodic observable for this dynamic, blue line), and a trajectory growing

exponentially at the expected exponential growth rate (green line) does not describe the long-time behavior. Under (b), the expectation value of x grows expo-

nentially but has nothing to do with the long-time behavior—x typically decays exponentially in this case, following the expectation value of the exponential

growth rate (ergodic observable for this dynamic). The probability distribution of x is concentrated near the green line at any t, while a small number of a-

typical trajectories let the mean grow along the dashed line. Linear growth in time at the expected rate of change in x does not describe the long-time behavior.
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C. 1814–1934 Decision theory: Expected utility

The consensus in the literature on utility theory is that

Bernoulli meant to compute the expected net change in utility

and made a slight error. Laplace4 re-told Bernoulli’s resolution

of the St Petersburg paradox and the invention of utility.

Perceiving Bernoulli’s Criterion as an error, he implicitly

“corrected” Bernoulli’s formal inconsistency without mention.

Laplace’s criterion

Maximize the expected rate of change in logarithmic
utility [Ref. 4, pp. 439–442]

1

dt
duB xð Þ ¼ 1

dt

Xnmax

n

p nð Þ ln xþ G nð Þ � Fð Þ � ln xð Þ
� �

: (8)

Later researchers adopted Laplace’s corrected criterion.

Todhunter23 followed Laplace, as do modern textbooks in

stating that utility is an object encoding human preferences

in its expectation value.16,24,25 Laplace stayed within

Bernoulli’s conceptual framework and was almost certainly

not aware of the physical interpretation of his criterion as the

ergodic growth rate under multiplicative dynamics (Eq. (5)).

Bernoulli motivated the logarithm by suggesting that the

perceived utility change induced by an extra dollar is inver-

sely proportional to wealth, leading to the differential equa-

tion duðxÞ ¼ x�1dx, whose solution is the logarithm. But

Bernoulli also considered Cramer’s suggestion of uC ¼
ffiffiffi
x
p

a

good representation of diminishing marginal utility. The

modern perspective takes Bernoulli’s logarithm more seri-

ously than he himself did. The route to the modern treatment

of the gamble problem is to ask: “What if the logarithm was

not merely convenient and a good fit to the data, what would

be its physical meaning if it truly was a logarithm?” Using

the logarithm in exactly the same place as the utility function

is equivalent to assuming multiplicative dynamics and con-

structing an ergodic observable.

D. Post-1934 decision theory: Bounded utility

Karl Menger6 re-visited Bernoulli’s 1738 study, and

came to the incorrect conclusion that only bounded utility

functions are permissible. Of course, whether a utility func-

tion, or anything else, is bounded or not in the limit of

diverging wealth is practically irrelevant because wealth

expressed in money will always be represented by a finite

number, as was pointed out, e.g., by Coolidge.26 However,

based on formal arguments, Menger drew conclusions for

the structure of the permissible formalism, namely, he ruled

out linear and logarithmic functions as models of behavior,

and, equivalently, additive and multiplicative processes as

models of wealth. Because of the central role of these dy-

namical models, the development of decision theory suf-

fered from this restriction, and it is satisfying to see that

formal arguments against these important models are in-

valid, as intuition would suggest. Menger must have been

unaware of the correction to Bernoulli’s work by Laplace.

His error may be phrased as using Bernoulli’s Criterion
instead of Laplace’s, and only considering the first term in

Bernoulli’s Criterion, implicitly setting the ticket fee to

zero, F ¼ 0. The invalidity of Menger’s claim was pointed

out by Peters.8,18 Menger’s argument survives as received

wisdom. For completeness, we state it here and specify the

invalid inferences involved.

Menger’s flawed argument

1. Logarithmic utility resolves the original St Petersburg
paradox because it turns exponentially increasing
money prizes, GðnÞ / expðnÞ, into linearly increas-
ing utility-prizes duðnÞ / n for large n.

2. If money prizes increase even faster, e.g., as the
exponential of an exponential, expðexpðnÞÞ, then
expected utility changes will diverge positively as
nmax diverges, just as expected wealth changes
diverge for exponentially increasing prizes.

3. In such games, logarithmic utility predicts that the
player will be willing to pay any ticket fee, just as lin-
ear utility does for exponentially increasing prizes. In
this sense, logarithmic utility is not qualitatively differ-
ent from linear utility. For utility theory to achieve the
desired generality, utility functions must be bounded.

The argument sounds plausible. If the logarithm specifies

the value attached to money, like another currency, then there

is no intuitive reason why it should be qualitatively different

from a linear function. But the logarithm encoding multiplica-

tive dynamics provides us with additional intuition: multiplica-

tive dynamics imply an absorbing boundary. Unlike under

additive dynamics it is impossible to recover from bankruptcy,

and this is a qualitative difference. In the coin-toss example in

Fig. 2 bankruptcy cannot occur, but in the general gamble

under multiplicative dynamics, bankruptcy is possible if at least

one possible outcome, n�, say, leads to the loss of one’s entire

wealth, Dðn�Þ ¼ �xðt0Þ, so that the corresponding growth fac-

tor is rðn�Þ ¼ 0. The absorbing state x ¼ 0 can be reached but

not escaped from. Closer inspection of Menger’s argument

reveals that the issue is indeed more nuanced than he thought.

We separate out the first term, for the smallest payout,

and write the expected utility change as

hduB xð Þi ¼ p 1ð Þln xþ G 1ð Þ � F

x

� �

þ
Xnmax

n¼2

p nð Þln
xþ G nð Þ � F

x

� �
: (9)

This form motivates the following evaluation of the three

steps in Menger’s argument:

1. Apart from turning exponential wealth changes into

linear utility changes, logarithmic utility also imposes

a no-bankruptcy condition. Bankruptcy becomes possible

at F¼xþGð1Þ. Reflecting this, the limit limF!xþGð1Þ
hduBðxÞi is negatively divergent for any nmax.

2. If prizes increase as the exponential of an exponential

then the expected utility change is positively

divergent in the limit nmax !1 only for ticket fees
satisfying F<xþGð1Þ. The double-limit limF!xþGð1Þ
limnmax!1

1
dthduBðxÞi results in the indeterminate form
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“�1þ1.” Note that the positive divergence only hap-

pens in the unrealistic limit nmax!1, whereas the neg-

ative divergence happens at finite F. The negative

divergence is physically meaningful in that it reflects the

impossibility to recover from bankruptcy under multipli-

cative dynamics.

3. In such games, logarithmic utility does not predict that

the player will want to pay any finite ticket fee. Instead,

it predicts that the player will not pay more than

xþ Gð1Þ, irrespective of how GðnÞ may diverge for

large n. This is qualitatively different from behavior

predicted by Huygens’ criterion (linear utility), where

under diverging expected prizes no ticket fee exists that

the player would not be willing to pay. Logarithmic

utility, carefully interpreted, resolves the class of prob-

lems for which Menger thought it would fail.

Despite a persisting intuitive discomfort, renowned

economists accepted Menger’s conclusions and considered

them an important milestone in the development of utility

theory. Menger implicitly ruled out the all-important loga-

rithmic function that connects utility theory to information

theory27,28 and provides the most natural connection to the

ergodicity argument we have presented. Menger also ruled

out the linear function that corresponds to Huygens’
Criterion, which utility theory was supposed to generalize.

Requiring boundedness for utility functions is methodo-

logically inapt. It is often stated that a diverging expected

utility is “impossible” [Ref. 16, p. 106], or that it “seems

natural” to require all expected utilities to be finite [Ref. 29,

p. 28–29]. Presumably, these statements reflect the intuitive

notion that no real thing can be infinitely useful. To imple-

ment this notion in the formalism of decision theory, it was

decided to make utility functions bounded. A far more natu-

ral way to implement the same notion would be to recog-

nize that money amounts (and quantities of anything

physical, anything money could represent) are themselves

bounded, and that this makes any usefulness one may assign

to them finite, even if utility functions are unbounded.

There is no need to place bounds on uðxÞ if x itself is

bounded.

V. SUMMARY AND CONCLUSION

Our method starts by recognizing the inevitable non-

ergodicity of stochastic growth processes, e.g., noisy multi-

plicative growth. The specific stochastic process implies a

set of meaningful observables with ergodic properties, e.g.,

the exponential growth rate. These observables make use of

a mapping that in the tradition of economics is viewed as a

psychological utility function, e.g., the logarithm.

The dynamic approach to the gamble problem makes

sense of risk aversion as optimal behavior for a given dynamic

and level of wealth, implying a different concept of rational-

ity. Maximizing expectation values of observables that do not

have the ergodic property of Section I cannot be considered

rational for an individual. Instead, it is more useful to consider

rational the optimization of time-average performance, or of

expectation values of appropriate ergodic observables. We

note that where optimization is used in science, the deep

insight is finding the right object to optimize (e.g., the action

in Hamiltonian mechanics, or the entropy in the microcanoni-

cal ensemble). The same is true in the present case—deep

insight is gained by finding the right object to optimize—we

suggest time-average growth. Laplace’s Criterion interpreted

as an ergodic growth rate under multiplicative dynamics

avoids the fundamental circularity of the behavioral inter-

pretation. In the latter, preferences, i.e., choices an individ-

ual would make, have to be encoded in a utility function,

the utility function is passed through the formalism, and

the output is the same as the input: the choices an individ-

ual would make.

We have repeated here that Bernoulli5 did not actually

compute the expected net change in logarithmic utility.8

Perceiving this as an error, Laplace4 corrected him implicitly

without mention. Later researchers used Laplace’s corrected

criterion until Menger6 unwittingly re-introduced Bernoulli’s

inconsistency and introduced a new error by neglecting the

second diverging term, hduB
�i. Throughout the twentieth

century, Menger’s incorrect conclusions were accepted by

prominent economists although they noticed, and struggled

with, detrimental consequences of the (undetected) error for

the developing formalism.

We have presented Menger’s argument against

unbounded utility functions as it is commonly stated nowa-

days. This argument is neither formally correct (it ignores the

negative divergence of the logarithm) nor compatible with

physical intuition (it ignores the absorbing boundary).

Laplace’s Criterion—contrary to common belief—elegantly

resolves Menger-type games.

Logarithmic utility must not be banned formally because

it is mathematically equivalent to the modern method of

defining an ergodic observable for multiplicative dynamics.

This point of view provides a firm basis on which to erect a

scientific formalism. The concepts we have presented resolve

the fundamental problem of decision theory, therefore game

theory, and asset pricing. Cochrane’s book2 is important in

this context as it sets out clearly that all of asset pricing can

be derived from the “basic pricing equation”—precisely the

combination of a utility function and expectation values we

have critiqued here. Cochrane further argues that the meth-

ods used in asset pricing summarize much of macroeconom-

ics. The problems listed there as those of greatest importance

to the discipline at the moment can be addressed using the

modern dynamic perspective.

In presenting our results, we have made a judgement

call between clarity and generality. We have chosen the

most general problem of decision theory, but have treated it

specifically for discrete time and wealth changes. Gambles

that are continuous in time and wealth changes can be treated

along similar lines,7 as can the specific St Petersburg prob-

lem.8 We have contrasted purely additive dynamics with

purely multiplicative dynamics. A generalization beyond

purely additive or multiplicative dynamics is possible, just as

it is possible to define utility functions other than the linear

or logarithmic function. This will be the subject of a future

publication. The arguments we have outlined are not
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restricted to monetary wealth but apply to anything that is

well modeled by a stochastic growth process. Applications

to ecology and biology seem natural.
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NOMENCLATURE

D net payout from a gamble

F fee for a ticket in a lottery

G prize in a lottery

n integer specifying an outcome

N number of parallel realizations of a gamble

n* integer specifying an outcome that leads to

bankruptcy

ns outcome that occurs in round s
nmax number of possible outcomes

� index specifying one parallel realization of a

gamble

p p(n) is the probability of outcome n
r growth factor. If outcome n occurs, r ¼ xðt0ÞþDðnÞ

xðt0Þ
t time

T number of sequential rounds of a gamble

t0 time before the first round of the gamble

s index specifying one sequential round of a gamble

dt duration of one round of a gamble

u utility function

du change in utility in one round of a gamble

uB Bernoullis logarithmic utility function

duB
� loss in logarithmic utility when reducing x by F

hduB
þi expectation value of gains in logarithmic utility at

zero ticket price

uC Cramers square-root utility function

x wealth

x� wealth in realization �
�xT finite-time average wealth

dx change in wealth in one round of a gamble.

h�i expectation value of �
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